
Parallel String Sample Sort?

Timo Bingmann, Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany
{bingmann,sanders}@kit.edu

Abstract. We discuss how string sorting algorithms can be parallelized
on modern multi-core shared memory machines. As a synthesis of the
best sequential string sorting algorithms and successful parallel sorting
algorithms for atomic objects, we propose string sample sort. The algo-
rithm makes effective use of the memory hierarchy, uses additional word
level parallelism, and largely avoids branch mispredictions. Additionally,
we parallelize variants of multikey quicksort and radix sort that are also
useful in certain situations.

1 Introduction

Sorting is perhaps the most studied algorithmic problem in computer science.
While the most simple model for sorting assumes atomic keys, an important class
of keys are strings to be sorted lexicographically. Here, it is important to exploit
the structure of the keys to avoid costly repeated comparisons of entire strings.
String sorting is for example needed in database index construction, some suffix
sorting algorithms, or MapReduce tools. Although there is a correspondingly
large volume of work on sequential string sorting, there is very little work on
parallel string sorting. This is surprising since parallelism is now the only way to
get performance out of Moore’s law so that any performance critical algorithm
needs to be parallelized. We therefore started to look for practical parallel string
sorting algorithms for modern multi-core shared memory machines. Our focus
is on large inputs. This means that besides parallelization we have to take the
high cost of branch mispredictions and the memory hierarchy into account. For
most multi-core systems, this hierarchy exhibits many processor-local caches but
disproportionately few shared memory channels to RAM.

After introducing notation and previous approaches in Section 2, Section 3
explains our parallel string sorting algorithms, in particular super scalar string
sample sort (S5) but also multikey quicksort and radix sort. These algorithms
are evaluated experimentally in Section 4.

We would like to thank our students Florian Drews, Michael Hamann, Chris-
tian Käser, and Sascha Denis Knöpfle who implemented prototypes of our ideas.

? This paper is a short version of the technical report [3].

2 Preliminaries

Our input is a set S = {s1, . . . , sn} of n strings with total length N . A string
is a zero-based array of |s| characters from the alphabet Σ = {1, . . . , σ}. For
the implementation, we require that strings are zero-terminated, i.e., s[|s|−1] =
0 /∈ Σ. Let D denote the distinguishing prefix size of S, i.e., the total number
of characters that need to be inspected in order to establish the lexicographic
ordering of S. D is a natural lower bound for the execution time of sequential
string sorting. If, moreover, sorting is based on character comparisons, we get a
lower bound of Ω(D + n log n).

Sets of strings are usually represented as arrays of pointers to the beginning
of each string. Note that this indirection means that, in general, every access to
a string incurs a cache fault even if we are scanning an array of strings. This
is a major difference to atomic sorting algorithms where scanning is very cache
efficient. Let lcp(s, t) denote the length of the longest common prefix (LCP)
of s and t. In a sequence or array of strings x let lcpx(i) denote lcp(xi−1, xi).
Our target machine is a shared memory system supporting p hardware threads
(processing elements – PEs) on Θ(p) cores.

2.1 Basic Sequential String Sorting Algorithms

Multikey quicksort [2] is a simple but effective adaptation of quicksort to strings.
When all strings in S have a common prefix of length `, the algorithm uses
character c = s[`] of a pivot string s ∈ S (e.g. a pseudo-median) as a splitter
character. S is then partitioned into S<, S=, and S> depending on comparisons
of the `-th character with c. Recursion is done on all three subproblems. The
key observation is that the strings in S= have common prefix length `+ 1 which
means that compared characters found to be equal with c never need to be
considered again. Insertion sort is used as a base case for constant size inputs.
This leads to a total execution time of O(D + n log n). Multikey quicksort works
well in practice in particular for inputs which fit into the cache.

MSD radix sort [8,10,7] with common prefix length ` looks at the `-th char-
acter producing σ subproblems which are then sorted recursively with common
prefix `+ 1. This is a good algorithm for large inputs and small alphabets since
it uses the maximum amount of information within a single character. For in-
put sizes o(σ) MSD radix sort is no longer efficient and one has to switch to a
different algorithm for the base case. The running time is O(D) plus the time
for solving the base cases. Using multikey quicksort for the base case yields an
algorithm with running time O(D + n log σ). A problem with large alphabets is
that one will get many cache faults if the cache cannot support σ concurrent
output streams (see [9] for details).

Burstsort dynamically builds a trie data structure for the input strings. In
order to reduce the involved work and to become cache efficient, the trie is built
lazily – only when the number of strings referenced in a particular subtree of
the trie exceeds a threshold, this part is expanded. Once all strings are inserted,

the relatively small sets of strings stored at the leaves of the trie are sorted
recursively (for more details refer to [16,17,15] and the references therein).

LCP-Mergesort is an adaptation of mergesort to strings that saves and reuses
the LCPs of consecutive strings in the sorted subproblems [11].

2.2 Architecture Specific Enhancements

Caching of characters is very important for modern memory hierarchies as it
reduces the number of cache misses due to random access on strings. When
performing character lookups, a caching algorithm copies successive characters
of the string into a more convenient memory area. Subsequent sorting steps can
then avoid random access, until the cache needs to be refilled. This technique
has successfully been applied to radix sort [10], multikey quicksort [12], and in
its extreme to burstsort [17].

Super-Alphabets can be used to accelerate string sorting algorithms which
originally look only at single characters. Instead, multiple characters are grouped
as one and sorted together. However, most algorithms are very sensitive to large
alphabets, thus the group size must be chosen carefully. This approach results in
16-bit MSD radix sort and fast sorters for DNA strings. If the grouping is done
to fit many characters into a machine word, this is also called word parallelism.

Unrolling, fission and vectorization of loops are methods to exploit out-of-
order execution and super scalar parallelism now standard in modern CPUs.
However, only specific, simple data in-dependencies can be detected and thus
inner loops must be designed with care (e.g. for radix sort [7]).

2.3 (Parallel) Atomic Sample Sort

There is a huge amount of work on parallel sorting so that we can only dis-
cuss the most relevant results. Besides (multiway)-mergesort, perhaps the most
practical parallel sorting algorithms are parallelizations of radix sort (e.g. [19])
and quicksort [18] as well as sample sort [4]. Sample sort is a generalization of
quicksort working with k − 1 pivots at the same time. For small inputs sample
sort uses some sequential base case sorter. Larger inputs are split into k buckets
b1, . . . , bk by determining k − 1 splitter keys x1 ≤ · · · ≤ xk−1 and then classi-
fying the input elements – element s goes to bucket bi if xi−1 < s ≤ xi (where
x0 and xk are defined as sentinel elements – x0 being smaller than all possible
input elements and xk being larger). Splitters can be determined by drawing a
random sample of size αk − 1 from the input, sorting it, and then taking every
α-th element as a splitter. Parameter α is the oversampling factor. The buckets
are then sorted recursively and concatenated. “Traditional” parallel sample sort
chooses k = p and uses a sample big enough to assure that all buckets have ap-
proximately equal size. Sample sort is also attractive as a sequential algorithm
since it is more cache efficient than quicksort and since it is particularly easy to
avoid branch mispredictions (super scalar sample sort – S4) [13]. In this case, k
is chosen in such a way that classification and data distribution can be done in
a cache efficient way.

2.4 More Related Work

There is some work on PRAM algorithms for string sorting (e.g. [5]). By com-
bining pairs of adjacent characters into single characters, one obtains algorithms
with work O(N logN) and time O(logN/ log logN). Compared to the sequential
algorithms this is suboptimal unless D = O(N) = O(n) and with this approach
it is unclear how to avoid work on characters outside distinguishing prefixes.

We found no publications on practical parallel string sorting. However, Ta-
kuya Akiba has implemented a parallel radix sort [1], Tommi Rantala’s library
[12] contains multiple parallel mergesorts and a parallel SIMD variant of mul-
tikey quicksort, and Nagaraja Shamsundar [14] also parallelized Waihong Ng’s
LCP-mergesort [11]. Of all these implementations, only the radix sort by Akiba
scales fairly well to many-core architectures. For this paper, we exclude the other
implementations and discuss their scalability issues in our technical report [3].

3 Shared Memory Parallel String Sorting

Already in a sequential setting, theoretical considerations and experiments [3]
indicate that the best string string sorting algorithm does not exist. Rather,
it depends at least on n, D, σ, and the hardware. Therefore we decided to
parallelize several algorithms taking care that components like data distribution,
load balancing or base case sorter can be reused. Remarkably, most algorithms in
Section 2.1 can be parallelized rather easily and we will discuss parallel versions
in Sections 3.2–3.4. However, none of these parallelizations make use of the
striking new feature of modern many-core systems: many multi-core processors
with individual cache levels but relatively few and slow memory channels to
shared RAM. Therefore we decided to design a new string sorting algorithm
based on sample sort, which exploits these properties. Preliminary result on
string sample sort have been reported in the bachelor thesis of Knöpfle [6].

3.1 String Sample Sort

In order to adapt the atomic sample sort from Section 2.3 to strings, we have to
devise an efficient classification algorithm. Also, in order to approach total work
O(D + n log n) we have to use the information gained during classification into
buckets bi in the recursive calls. This can be done by observing that

∀1 ≤ i ≤ k : ∀s, t ∈ bi : lcp(s, t) ≥ lcpx(i) . (1)

Another issue is that we have to reconcile the parallelization and load balancing
perspective from traditional parallel sample sort with the cache efficiency per-
spective of super scalar sample sort. We do this by using dynamic load balancing
which includes parallel execution of recursive calls as in parallel quicksort.

In our technical report [3] we outline a variant of string sample sort that uses
a trie data structure and a number of further tricks to enable good asymptotic
performance. However, we view this approach as somewhat risky for a first rea-
sonable implementation. Hence, in the following, we present a more pragmatic
implementation.

x1

x0 x2

b0 b1 b2 b3 b4 b5 b6

<

=

>

< = > < = >

Fig. 1. Ternary search tree for v = 3 splitters.

Super Scalar String Sample Sort (S5) – A Pragmatic Solution. We
adapt the implicit binary search tree approach used in S4 [13] to strings. Rather
than using arbitrarily long splitters as in trie sample sort [3], or all characters
of the alphabet as in radix sort, we design the splitter keys to consist of as
many characters as fit into a machine word. In the following let w denote the
number of characters fitting into one machine word (for 8-bit characters and
64-bit machine words we would have w = 8). We choose v = 2d − 1 splitters
x0, . . . , xv−1 from a sorted sample to construct a perfect binary search tree,
which is used to classify a set of strings based on the next w characters at
common prefix `. The main disadvantage of this approach is that there may be
many input strings whose next w characters are identical. For these strings, the
classification does not reveal much information. We make the best out of such
inputs by explicitly defining equality buckets for strings whose next w characters
exactly match xi. For equality buckets, we can increase the common prefix length
by w in the recursive calls, i.e., these characters will never be inspected again.
In total, we have k = 2v + 1 different buckets b0, . . . , b2v for a ternary search
tree (see Figure 1). Testing for equality can either be implemented by explicit
equality tests at each node of the search tree (which saves time when most
elements end up in a few large equality buckets) or by going down the search
tree all the way to a bucket bi (i even) doing only ≤-comparisons, followed by a
single equality test with x i

2
, unless i = 2v. This allows us to completely unroll

the loop descending the search tree. We can then also unroll the loop over the
elements, interleaving independent tree descents. Like in [13], this is an important
optimization since it allows the instruction scheduler in a super scalar processor
to parallelize the operations by drawing data dependencies apart. The strings in
buckets b0 and b2v keep common prefix length `. For other even buckets bi the
common prefix length is increased by lcpx(i

2). An analysis similar to the one of
multikey quicksort yields the following asymptotic running time bound.

Lemma 1. String sample sort with implicit binary trees and word parallelism
can be implemented to run in time O

(
D
w log v + n log n

)
.

Implementation Details. Goal of S5 is to have a common classification data
structure that fits into the cache of all cores. Using this data structure, all PEs
can independently classify a subset of the strings into buckets in parallel. As
most commonly done in radix sort, we first classify strings, counting how many

fall into each bucket, then calculate a prefix sum and redistribute the string
pointers accordingly. To avoid traversing the tree twice, the bucket index of each
string is stored in an oracle. Additionally, to make higher use of super scalar
parallelism, we even separate the classification loop from the counting loop [7].

Like in S4, the binary tree of splitters is stored in level-order as an array,
allowing efficient traversal using i := 2i+ {0, 1}, without branch mispredictions.
To perform the equality check after traversal without extra indirections, the
splitters are additionally stored in order. Another idea is to keep track of the last
≤-branch during traversal; this however was slower and requires an extra register.
A third variant is to check for equality after each comparison, which requires only
an additional JE instruction and no extra CMP. The branch misprediction cost is
counter-balanced by skipping the rest of the tree. An interesting observation is
that, when breaking the tree traversal at array index i, then the corresponding
equality bucket bj can be calculated from i using only bit operations (note that
i is an index in level-order, while j is in-order). Thus in this third variant, no
additional in-order splitter array is needed.

The sample is drawn pseudo-randomly with an oversampling factor α = 2
to keep it in cache when sorting with STL’s introsort and building the search
tree. Instead of using the straight-forward equidistant method to draw splitters
from the sample, we use a simple recursive scheme that tries to avoid using the
same splitter multiple times: Select the middle sample m of a range a..b (initially
the whole sample) as the middle splitter x̄. Find new boundaries b′ and a′ by
scanning left and right from m skipping samples equal to x̄. Recurse on a..b′ and
a′..b.

For current 64-bit machines with 256 KiB L2 cache, we use v = 8191. Note
that the limiting data structure which must fit into L2 cache is not the splitter
tree, which is only 64 KiB for this v, but is the bucket counter array containing
2v + 1 counters, each 8 bytes long. We did not look into methods to reduce this
array’s size, because the search tree must also be stored both in level-order and
in in-order.

Parallelization of S5. Parallel S5 (pS5) is composed of four sub-algorithms for
differently sized subsets of strings. For string sets S with |S| ≥ n

p , a fully parallel

version of S5 is run, for large sizes n
p > |S| ≥ tm a sequential version of S5 is

used, for sizes tm > |S| ≥ ti the fastest sequential algorithm for medium-size
inputs (caching multikey quicksort from Section 3.3) is called, which internally
uses insertion sort when |S| < ti. The thresholds ti and tm depend on hardware
specifics, see Section 4 for empirically determined values.

The fully parallel version of S5 uses p′ = d |S|p e threads for a subset S. It
consists of four stages: selecting samples and generating a splitter tree, parallel
classification and counting, global prefix sum, and redistribution into buckets.
Selecting the sample and constructing the search tree are done sequentially,
as these steps have negligible run time. Classification is done independently,
dividing the string set evenly among the p′ threads. The prefix sum is done
sequentially once all threads finish counting.

In the sequential version of S5 we permute the string pointer array in-place
by walking cycles of the permutation [8]. Compared to out-of-place redistribu-
tion into buckets, the in-place algorithm uses fewer input/output streams and
requires no extra space. The more complex instruction set seems to have only
little negative impact, as today, memory access is the main bottleneck. However,
for fully parallel S5, an in-place permutation cannot be done in this manner. We
therefore resort to out-of-place redistribution, using an extra string pointer array
of size n. The string pointers are not copied back immediately. Instead, the role
of the extra array and original array are swapped for the recursion.

All work in parallel S5 is dynamically load balanced via a central job queue.
Dynamic load balancing is very important and probably unavoidable for par-
allel string sorting, because any algorithm must adapt to the input string set’s
characteristics. We use the lock-free queue implementation from Intel’s Thread
Building Blocks (TBB) and threads initiated by OpenMP to create a light-weight
thread pool.

To make work balancing most efficient, we modified all sequential sub-algo-
rithms of parallel S5 to use an explicit recursion stack. The traditional way to
implement dynamic load balancing would be to use work stealing among the
sequentially working threads. This would require the operations on the local re-
cursion stacks to be synchronized or atomic. However, for our application fast
stack operations are crucial for performance as they are very frequent. We there-
fore choose a different method: voluntary work sharing. If the global job queue
is empty and a thread is idle, then a global atomic boolean flag is set to indicate
that other threads should share their work. These then free the bottom level of
their local recursion stack (containing the largest subproblems) and enqueue this
level as separate, independent jobs. This method avoids costly atomic operations
on the local stack, replacing it by a faster (not necessarily synchronized) boolean
flag check. The short wait of an idle thread for new work does not occur often,
because the largest recursive subproblems are shared. Furthermore, the global
job queue never gets large because most subproblems are kept on local stacks.

3.2 Parallel Radix Sort

Radix sort is very similar to sample sort, except that classification is much
faster and easier. Hence, we can use the same parallelization toolkit as with
S5. Again, we use three sub-algorithms for differently sized subproblems: fully
parallel radix sort for the original string set and large subsets, a sequential radix
sort for medium-sized subsets and insertion sort for base cases. Fully parallel
radix sort consists of a counting phase, global prefix sum and a redistribution
step. Like in S5, the redistribution is done out-of-place by copying pointers into a
shadow array. We experimented with 8-bit and 16-bit radixes for the full parallel
step. Smaller recursive subproblems are processed independently by sequential
radix sort (with in-place permuting), and here we found 8-bit radixes to be faster
than 16-bit sorting. Our parallel radix sort implementation uses the same work
balancing method as parallel S5.

3.3 Parallel Caching Multikey Quicksort

Our preliminary experiments with sequential string sorting algorithms [3] showed
a surprise winner: an enhanced variant of multikey quicksort by Tommi Rantala
[12] often outperformed more complex algorithms. This variant employs both
caching of characters and uses a super-alphabet of w = 8 characters, exactly as
many as fit into a machine word. The string pointer array is augmented with w
cache bytes for each string, and a string subset is partitioned by a whole machine
word as splitter. Key to the algorithm’s good performance, is that the cached
characters are reused for the recursive subproblems S< and S>, which greatly
reduces the number of string accesses to at most dDw e+ n in total.

In light of this variant’s good performance, we designed a parallelized ver-
sion. We use three sub-algorithms: fully parallel caching multikey quicksort, the
original sequential caching variant (with explicit recursion stack) for medium
and small subproblems, and insertion sort as base case. For the fully parallel
sub-algorithm, we generalized a block-wise processing technique from (two-way)
parallel atomic quicksort [18] to three-way partitioning. The input array is viewed
as a sequence of blocks containing B string pointers together with their w cache
characters. Each thread holds exactly three blocks and performs ternary parti-
tioning by a globally selected pivot. When all items in a block are classified as <,
= or >, then the block is added to the corresponding output set S<, S=, or S>.
This continues as long as unpartitioned blocks are available. If no more input
blocks are available, an extra empty memory block is allocated and a second
phase starts. The second partitioning phase ends with fully classified blocks,
which might be only partially filled. Per fully parallel partitioning step there
can be at most 3p′ partially filled blocks. The output sets S<, S=, and S> are
processed recursively with threads divided as evenly among them as possible.
The cached characters are updated only for the S= set.

In our implementation we use atomic compare-and-swap operations for block-
wise processing of the initial string pointer array and Intel TBB’s lock-free queue
for sets of blocks, both as output sets and input sets for recursive steps. When a
partition reaches the threshold for sequential processing, then a continuous array
of string pointers plus cache characters is allocated and the block set is copied
into it. On this continuous array, the usual ternary partitioning scheme of mul-
tikey quicksort is applied sequentially. Like in the other parallelized algorithms,
we use dynamic load balancing and free the bottom level when re-balancing is
required. We empirically determined B = 128 Ki as a good block size.

3.4 Burstsort and LCP-Mergesort

Burstsort is one of the fastest string sorting algorithms and cache-efficient for
many inputs, but it looks difficult to parallelize. Keeping a common burst trie
would require prohibitively many synchronized operations, while building inde-
pendent burst tries on each PE would lead to the question how to merge multiple
tries of different structure.

One would like to generalize LCP-mergesort to a parallel p-way LCP-aware
merging algorithm. This looks promising in general but we leave this for future
work since LCP-mergesort is not really the best sequential algorithm in our
experiments.

4 Experimental Results

We implemented parallel S5, multikey quicksort and radixsort in C++ and com-
pare them with Akiba’s radix sort [1]. We also integrated many sequential imple-
mentations into our test framework, and compiled all programs using gcc 4.6.3
with optimizations -O3 -march=native. In our report [3] we discuss the perfor-
mance of sequential string sorters. Our implementations and test framework are
available from http://tbingmann.de/2013/parallel-string-sorting.

Experimental results we report in this paper stem from two platforms. The
larger machine, IntelE5, has four 8-core Intel Xeon E5-4640 processors contain-
ing a total of 32 cores and supporting p = 64 hardware threads. The second
platform is a consumer-grade Intel i7 920 with four cores and p = 8 hardware
threads. Turbo-mode was disabled on IntelE5. Our technical report [3] contains
further details of these machines and experimental results from three additional
platforms. We selected the following datasets, all with 8-bit alphabets. More
characteristics of these instances are shown in Table 1.

URLs contains all URLs on a set of web pages which were crawled breadth-
first from the authors’ institute website. They include the protocol name.

Random from [16] are strings of length [0, 20) over the ASCII alphabet
[33, 127), with both lengths and characters chosen uniform at random.

GOV2 is a TREC test collection consisting of 25 million HTML pages, PDF
and Word documents retrieved from websites under the .gov top-level domain.
We consider the whole concatenated corpus for line-based string sorting.

Wikipedia is an XML dump of the most recent version of all pages in the
English Wikipedia, which was obtained from http://dumps.wikimedia.org/;
our dump is dated enwiki-20120601. Since the XML data is not line-based, we
perform suffix sorting on this input.

We also include the three largest inputs Ranjan Sinha [16] tested burstsort
on: a set of URLs excluding the protocol name, a sequence of genomic strings of
length 9 over a DNA alphabet, and a list of non-duplicate English words called
NoDup. The “largest” among these is NoDup with only 382 MiB, which is why
we consider these inputs more as reference datasets than as our target.

The test framework sets up a separate run environment for each test run.
The program’s memory is locked into RAM, and to isolate heap fragmentation,
it was very important to fork() a child process for each run. We use the largest
prefix [0, 2d) of our inputs which can be processed with the available RAM. We
determined tm = 64 Ki and ti = 64 as good thresholds to switch sub-algorithms.

Figure 2 shows a selection of the detailed parallel measurements from our
report [3]. For large instances we show results on IntelE5 (median of 1–3 repeti-
tions) and for small instances on Inteli7 (of ten repetitions). The plots show the

http://tbingmann.de/2013/parallel-string-sorting
http://dumps.wikimedia.org/

1 8 16 32 48 64

0

2

4

6

8

10

12

sp
ee

d
u
p

URLs (complete)

1 8 16 32 48 64

0

2

4

6

8

10

Random, n = 3.27 G, N = 32 Gi

IntelE5

1 8 16 32 48 64

0

2

4

6

8

10

12

sp
ee

d
u
p

GOV2, n = 3.1 G, N = 128 Gi

1 8 16 32 48 64

0

4

8

12

16

20

Wikipedia, n = 4 Gi

1 2 3 4 5 6 7 8
0

1

2

3

4

sp
ee

d
u
p

Sinha URLs (complete)

1 2 3 4 5 6 7 8

1

2

3

4

number of threads

Sinha DNA (complete)

Inteli7

1 2 3 4 5 6 7 8

1

2

3

4

number of threads

sp
ee

d
u
p

Sinha NoDup (complete)

pS5-Unroll

pS5-Equal

pMultikeyQuicksort

pRadixsort 8-bit

pRadixsort 16-bit

pRadixsort Akiba

Fig. 2. Speedup of parallel algorithm implementations on IntelE5 (top four plots) and
Inteli7 (bottom three plots)

Table 1. Characteristics of the selected input instances.

Name n N D
N

(D) σ avg. |s|
URLs 1.11 G 70.7 Gi 93.5 % 84 68.4
Random ∞ ∞ − 94 10.5
GOV2 11.3 G 425 Gi 84.7 % 255 40.3
Wikipedia 83.3 G 1

2
n(n+1) (79.56 T) 213 1

2
(n+1)

Sinha URLs 10 M 304 Mi 97.5 % 114 31.9
Sinha DNA 31.6 M 302 Mi 100 % 4 10.0
Sinha NoDup 31.6 M 382 Mi 73.4 % 62 12.7

speedup of our implementations and Akiba’s radix sort over the best sequential
algorithm [3]. We included pS5-Unroll, which interleaves three unrolled descents
of the search tree, pS5-Equal, which unrolls a single descent testing equality at
each node, our parallel multikey quicksort (pMKQS), and radix sort with 8-bit
and 16-bit fully parallel steps. On all platforms, our parallel implementations
yield good speedups, limited by memory bandwidth, not processing power. On
IntelE5 for all four test instances, pMKQS is fastest for small numbers of threads.
But for higher numbers, pS5 becomes more efficient than pMKQS, because it
utilizes memory bandwidth better. On all instances, except Random, pS5 yields
the highest speedup for both the number of physical cores and hardware threads.
On Random, our 16-bit parallel radix sort achieves a slightly higher speedup.
Akiba’s radix sort does not parallelize recursive sorting steps (only the top-level
is parallelized) and only performs simple load balancing. This can be seen most
pronounced on URLs and GOV2. On Inteli7, pS5 is consistently faster than
pMKQS for Sinha’s smaller datasets, achieving speedups of 3.8–4.5, which is
higher than the three memory channels on this platform. On IntelE5, the high-
est speedup of 19.2 is gained with pS5 for suffix sorting Wikipedia, again higher
than the 4 × 4 memory channels. For all test instances, except URLs, the fully
parallel sub-algorithm of pS5 was run only 1–4 times, thus most of the speedup
is gained in the sequential S5 steps. The pS5-Equal variant handles URL in-
stances better, as many equal matches occur here. However, for all other inputs,
interleaving tree descents fares better. Overall, pS5-Unroll is currently the best
parallel string sorting implementation on these platforms.

5 Conclusions and Future Work

We have demonstrated that string sorting can be parallelized successfully on
modern multi-core shared memory machines. In particular, our new string sam-
ple sort algorithm combines favorable features of some of the best sequential
algorithms – robust multiway divide-and-conquer from burstsort, efficient data
distribution from radix sort, asymptotic guarantees similar to multikey quick-
sort, and word parallelism from cached multikey quicksort.

Implementing some of the refinements discussed in our report [3] are likely
to yield further improvements for pS5. To improve scalability on large machines,

we may also have to look at NUMA (non uniform memory access) effects more
explicitly. Developing a parallel multiway LCP-aware mergesort might then be-
come interesting.

References

1. Akiba, T.: Parallel string radix sort in C++. http://github.com/iwiwi/

parallel-string-radix-sort (2011), git repository accessed November 2012
2. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:

ACM (ed.) 8th Symposium on Discrete Algorithms. pp. 360–369 (1997)
3. Bingmann, T., Sanders, P.: Parallel string sample sort. Tech. rep. (May 2013), see

ArXiv e-print arXiv:1305.1157
4. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha,

M.: A comparison of sorting algorithms for the connection machine CM-2. In: 3rd
Symposium on Parallel Algorithms and Architectures. pp. 3–16 (1991)

5. Hagerup, T.: Optimal parallel string algorithms: sorting, merging and computing
the minimum. In: Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing. pp. 382–391. STOC ’94, ACM, New York, NY, USA (1994)

6. Knöpfle, S.D.: String samplesort (November 2012), bachelor Thesis, Karlsruhe In-
stitute of Technology, in German

7. Kärkkäinen, J., Rantala, T.: Engineering radix sort for strings. In: String Process-
ing and Information Retrieval, pp. 3–14. No. 5280 in LNCS, Springer (2009)

8. McIlroy, P.M., Bostic, K., McIlroy, M.D.: Engineering radix sort. Computing Sys-
tems 6(1), 5–27 (1993)

9. Mehlhorn, K., Sanders, P.: Scanning multiple sequences via cache memory. Algo-
rithmica 35(1), 75–93 (2003)

10. Ng, W., Kakehi, K.: Cache efficient radix sort for string sorting. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences E90-
A(2), 457–466 (2007)

11. Ng, W., Kakehi, K.: Merging string sequences by longest common prefixes. IPSJ
Digital Courier 4, 69–78 (2008)

12. Rantala, T.: Library of string sorting algorithms in C++. http://github.com/

rantala/string-sorting (2007), git repository accessed November 2012
13. Sanders, P., Winkel, S.: Super scalar sample sort. In: 12th European Symposium

on Algorithms. LNCS, vol. 3221, pp. 784–796. Springer (2004)
14. Shamsundar, N.: A fast, stable implementation of mergesort for sorting text files.

http://code.google.com/p/lcp-merge-string-sort (May 2009), source down-
loaded November 2012

15. Sinha, R., Wirth, A.: Engineering Burstsort: Toward fast in-place string sorting.
J. Exp. Algorithmics 15, 2.5:1–24 (Mar 2010)

16. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. J. Exp. Algorithmics 9, 1.5:1–31 (Dec 2004)

17. Sinha, R., Zobel, J., Ring, D.: Cache-efficient string sorting using copying. J. Exp.
Algorithmics 11, 1.2:1–32 (Feb 2007)

18. Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000. In: PDP. pp. 372–381. IEEE
Computer Society (2003)

19. Wassenberg, J., Sanders, P.: Engineering a multi-core radix sort. In: Euro-Par 2011
Parallel Processing, pp. 160–169. No. 6853 in LNCS, Springer (2011)

http://github.com/iwiwi/parallel-string-radix-sort
http://github.com/iwiwi/parallel-string-radix-sort
http://github.com/rantala/string-sorting
http://github.com/rantala/string-sorting
http://code.google.com/p/lcp-merge-string-sort

	Parallel String Sample Sort

