Visualisation of Very Large Graphs

Study Thesis

Timo Bingmann Aug 2, 2006

Motivation

■ Library Features 2 Architecture & Data Structures

Road Map

Introduction

■ Motivation: Street Network of Europe

■ Data Structures: R-Tree and Adjacency-Array Queries: Serialization and Query Parser

Basic Architecture

3 Experiments 4 Demo

Visualisation of a street network of Europe.

Aug 2, 2006 2 / 2

Motivation

- Magnitudes
 - About 18 million vertices and 22 million edges.
- Application

⇒ drawing of paths.

■ Route planning

Visualisation Library

- Supports any two dimensional layouted graph. Very fast query speeds: < 1 sec.</p>
- Seamless integration into existing applications.
- Easily animate calculation mechanisms of algorithms.
- Fast and user-friendly browsing at presentations or via the Internet. ⇒ Java web applet.
- High-quality exports of sections to PDF or PNG for presentations and papers.

5 / 26

Basic Architecture

Aug 2, 2006

Supported Graphs

- Two dimensional layouted graph An additional z-axis (significance)
- Attributes on vertices and edges:
- coordinates and drawing parameters. Each attribute has a type like bool, char, integer

Analysis: Route Planning

Java Web Applet

Weh User

The route planning algorithm operates on a street network.

Visualisation Library

Application

CORBA

C++

Qt/C++ Client

User / Developer

- Route planning never changes streets. Only small set of edges are marked by the
- algorithm.

Large volume of unchanging graph data.

 Marked edges are undone after viewing. ■ ⇒ Separate static graph data from temporary

changes.

Separation

- Temporary changes are an overlay graph. ⇒ efficient rollback of changes.
- Can apply compact data structures to static graph data. \Rightarrow adjacency array
- Support of multiple simultaneous clients. ⇒ multi-threading support.

Architecture & Data Structures Aug 2, 2006

9 / 26

- Compact and easy to serialize.
- Array has to be rebuilt to apply changes.
- Attribute values are stored in a similar fashion
- GraphLoader class for direct loading of arrays.

Architecture & Data Structu

Aug 2, 2006

10 / 26

Changelist

- Save temporary changes in flexible hash map structures.
- Support convenient functions to change graph data.
 - addVertex(vid)
 - setVertexAttr(vid, attrid, value)
 - delVertex(vid)
 - addEdge(src, tgt)
 - setEdgeAttr(src, tgt, attrid, value)
 - delEdge(src, tgt)

Animation Timeline

Adjacency Array

 Changes can be animated by setting time frame markers in the sequence of function calls.

advanceTimeFrame();

setEdgeAttr(c.d.1.50) addEdge(b,d) advanceTimeFrame():

Index Structure

Required

Spatial index structure to accelerate range queries on the graph. Needs to support zooming and extraction in z-order.

Selected

R-Tree

R-Tree

- Based on B-Tree, but contains rectangles instead of numbers.
- Efficient for very large number of rectangles through high fan-out.

Aug 2, 2006

R-Tree Splitting

■ How to find a good split when a node overflows?

R-Tree Properties

- of rectangles in a node. Let $m \leq \frac{M}{2}$. Every node contains between m and M
- rectangles or it is the root. ■ The root contains at least two rectangles or it
- is a leaf. Every rectangle in an inner node is the

Define M maximum and m minimum number

minimum bounding-box of the rectangles contained in its subtree. All leaves are on the same level.

R-Tree Splitting R-Tree Splitting Library contains three R-tree Variants: R-Tree with quadratic Split, R-Tree with linear Split and R*-Tree. Germany's Autobahnen Multilevel R-Tree Multiple R-Trees are used to support extraction in z-order.

getArea Query

- Vertices and edges are extracted and sent to the client in a serialized binary format.
- Change function calls are sent as an animation script.
- Visualisation library is not limited to CORBA as middleware

Architecture & Data Structure

Architecture & Data Structure

getArea Query

- Send only attributes required to draw the graph. Screen coordinate transformation is calculated
- on the server. Transfered as short. User can set a filter to limit the drawn edges.

Aug 2, 2006 20 / 26

Parser

Server contains an arithmetic parser used to parse attribute selection strings

(x - 5411) * 0.331 cast short, ..., speed

and user filter strings.

Integration

Easy integration into existing programs.

- Well-designed C++ namespace with lots of doxygen documentation.
- Animation is automatically created from sequence of function calls.
- Accelerated loading from snapshot data files containing the complete server state.

Architecture & Data Structures

21 / 26 Architecture & Data Structures

Aug 2, 2006

Map Sizes

Мар	Vertices	Base Graph	R-Trees
	Edges	Attributes	Total
Luxembourg	30 747	538 KB	517 KB
	38 143	531 KB	1586 KB
Belgium	463 795	8 269 KB	7 895 KB
	594 715	8 142 KB	24 307 KB
Netherlands	893 407	15 920 KB	15 174 KB
	1 144 337	15 675 KB	46 769 KB
Germany	4 378 447	77 210 KB	73 643 KB
	5 504 454	76 111 KB	226 964 KB
Europe	18 029 722	315 385 KB	301 322 KB
	22 339 557	311 176 KB	927 883 KB

Table: Map Sizes

Experiments

23 / 26 E

Query Speed

Street network of Europe built incrementally.

Aug 2, 2006 24 / 26

Query time measured on a fixed view of Karlsruhe with surrounding cities.

Query Speed

 Query time of 1000 random areas on the street network of Europe.

Demo

- Qt client with user-defined drawing rules.
- Java web client with integrated route planning algorithm.

http://algo2.iti.uni-karlsruhe.de/schultes/hwy/demo/

ments Aug 2, 2006 25 / 26 Demo Aug 2, 2006 28 / 27 Demo